- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources3
- Resource Type
-
0000000003000000
- More
- Availability
-
30
- Author / Contributor
- Filter by Author / Creator
-
-
Agarwal, Sapan (3)
-
Marinella, Matthew J. (3)
-
Bennett, Christopher H. (2)
-
Li, Yiyang (2)
-
Talin, A. Alec (2)
-
Xiao, T. Patrick (2)
-
Brunhaver, John S. (1)
-
Feinberg, Ben (1)
-
Friedman, Joseph S. (1)
-
Fuller, Elliot (1)
-
Fuller, Elliot J. (1)
-
Hu, Xuan (1)
-
Hughart, David (1)
-
Incorvia, Jean Anne C. (1)
-
Jacobs-Gedrim, Robin (1)
-
James, Conrad D. (1)
-
Keene, Scott T. (1)
-
Melianas, Armantas (1)
-
Salleo, Alberto (1)
-
Siath, Max (1)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
Fuller, Elliot J.; Keene, Scott T.; Melianas, Armantas; Wang, Zhongrui; Agarwal, Sapan; Li, Yiyang; Tuchman, Yaakov; James, Conrad D.; Marinella, Matthew J.; Yang, J. Joshua; et al (, Science)Neuromorphic computers could overcome efficiency bottlenecks inherent to conventional computing through parallel programming and readout of artificial neural network weights in a crossbar memory array. However, selective and linear weight updates and <10-nanoampere read currents are required for learning that surpasses conventional computing efficiency. We introduce an ionic floating-gate memory array based on a polymer redox transistor connected to a conductive-bridge memory (CBM). Selective and linear programming of a redox transistor array is executed in parallel by overcoming the bridging threshold voltage of the CBMs. Synaptic weight readout with currents <10 nanoamperes is achieved by diluting the conductive polymer with an insulator to decrease the conductance. The redox transistors endure >1 billion write-read operations and support >1-megahertz write-read frequencies.more » « less
-
Xiao, T. Patrick; Marinella, Matthew J.; Bennett, Christopher H.; Hu, Xuan; Feinberg, Ben; Jacobs-Gedrim, Robin; Agarwal, Sapan; Brunhaver, John S.; Friedman, Joseph S.; Incorvia, Jean Anne C. (, IEEE Journal on Exploratory Solid-State Computational Devices and Circuits)
An official website of the United States government
